
INT. J. CONTROL, 1989, YOLo 49, No.3, 745-760

ICompliant motion control for robot manipulators

H. KAZEROON~t

A practical, non-linear controller design methodology is presented for robot
manipulators guaranteeing that the robot end-point follows an input command
vector 'closely' when the robot is not constrained by the environment, and that
the contact force is a function of the same input command vector (used in the
unconstrained environment) when the robot is constrained by the environment.
The controller is capable of 'handling' both types of constrained and unconstrained
manoeuvres, and is robust to bounded uncertainties in the robot dynamics. The
controller does not need any hardware or software switch for the transition between
unconstrained and constrained manoeuvring. Stability of the environment and the
manipulator taken as a whole has been investigated, and a bound for stable
manipulation has been derived. For stability, there must be some initial compliancy
either in the robot or in the environment. A unified approach to moaelling robot
dynamics is expressed in terms of sensitivity functions, as opposed to the lagrangian
approach, allowing the incorporation of the dynamic behaviour of all the robot
manipulator elements.
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A closed-loop mapping from r to 1 in Fig. 5
d vector of the external force on the robot end-point (all vectors are n xl)
e input trajectory vector

E environment dynamics
1 vector of the contact force [11 12 ...J..]T

100 limiting value of the contact force for infinitely rigid environment
G robot dynamics with positioning controller
H compensator transfer function matrix (operating on the contact force,!)
In identity matrix
r input-command vector
n degrees of the freedom of the robot n < 6
S robot manipulator sensitivity (ljstiffness)
T positive scalar
V forward loop mapping from e to 1 in Fig. 5
x vector of the environment deflection
y vector of the robot end-point position

y 00 limiting value of the robot position for rigid environment
Xo vector of the environment position before contact
f) vector of the joint angles of the robot

e., ed' ,u, Y positive scalars
(1)0 frequency range of operation (bandwidth)

(Xi' Pi' v positive scalars
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1. Introduction
Most assembly operations and manufacturing tasks require mechanical inter-

actions with the environment or with the object being manipulated, along with 'fast'
motion in free and unconstrained space (Mason 1981, Paul and Shimano 1976,
Salisbury 1980). We plan to develop a control system such that the robot will be
capable of manoeuvring in both constrained and unconstrained environments
without any hardware and software switches in the tran~ition period. In meeting the
above goal, the objective is to provide a stabilizing dynamic compensator for the
robot manipulator such that the following design specifications are satisfied:

(i) The robot end-point follows an input-command vector, r, when the robot
manipulator is free to move.

(ii:1 The contact force,f, a function of the input command vector, r, when the robot
is in contact with the environment. (In this paper, 'force' implies both force and
torque and 'position' implies both position and orientation.)

The first design specification allows for free manipulation when the robot is not
constrained. If the robot"encounters the environment, then according to the second
design specification, the contact force will be a function of the input command
vector, r. Consequently, the system will have bounded and controllable contact force.
Note that r is an input command vector that is used for both unconstrained and
constrained manoeuvres. The end-point of the robot will follow r when the robot is
unconstrained, while the contact force, f, will be a function of r (preferably a linear
function for some bounded frequency range of r) when the robot is constrained.

f

2. Dynamic model of the robot with positioning controllers
In this section, a general approach will be developed to describe the dynamic

behaviour of a large class of industrial and research robot manipulators having
positioning controllers. The fact that most industrial manipulators already have some
kind of positioning controller is the motivation behind our approach. Also, a number
of methodologies exist for the development of robust positioning controllers for direct
and non-direct robot manipulators (Slotine 1985, Vidyasagar and Spong 1985). The
unified approach for modelling robot dynamics discussed here is expressed in terms of
sensitivity functions. It allows us to incorporate the dynamic behaviour of all the
elements of a robot manipulator in addition to the rigid body dynamics.

The end-point position of a robot manipulator that has a positioning controller is
a dynamic function of its input trajectory vector, e, and the external force, d. Let G and
S be two functions that show the robot end-point position is a function of the input
trajectory, e and the external force, d. (The assumption that linear superposition in (1)
holds for the effects of d and e is useful in understanding the nature of the interaction
between the robot and the environment. This interaction is in a feedback form and will
be clarified with the help of Fig. 3. We will note in § 4 that the results of the non-linear
analysis do not depend on this ass~mption, and one can extend the obtained results to
cover the case when G[e] and S[fi] do not superimpose.)

ly=G[e]+S[d] (1)

Robot manipulators with tracking controllers are not infinitely stiff in response to
external forces (also called disturbances). Even though the positioning controllers of
robots are usually designed to follow the trajectory commands and reject dis-
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turbances, the robot end-point will move somewhat in response to imposed forces on
it. The motion of the robot end-point in response to imposed forces is caused by either
structural compliance in the robot or by the compliance of the positioning controller.
(In a simple example, if a Remote Centre Compliance (RCC) with a linear dynamic
behaviour is installed at the end-point of the robot, then S is equal to the reciprocal of
stiffness (impedance in the dynamic sense) of the RCC.) S is called the sensitivity
function and it maps tte external forces to the robot position. For a robot with a
"good' positioning controller, S is a mapping with small gain. (The gain of an operator
is defined in Appendix A.) No assumption on the internal structures of G[e] and S[d]
are made. Figure 1 shows the nature of the mapping in (1).

We assume that G[e] and S[d] are stable, non-linear operators in the Lp-space; in
other words G[e] and S[d] are such that G:L;I-+L;, S:L;I-+L; and also there exist
constants (Xl' PI' (Xz, and pz such that IIG[e] lip < (Xilielip + PI and IIS[d] lip < (Xzlldllp
+ pz. (The definition of stability in Lp-sense is given in Appendix A.)

Note that we modelled the dynamic behaviour of the robot based on an
input-output functional relationship. This unified approach to modelling allows us to
incorporate the dynamic behaviour of all the elements ofther&bot. Considering the
robot as a rigid body, the dynamic behaviour of an open-loop robot can be derived by
a set of non-linear differential equations via the lagrangian or eulerian approach.
:However, there may be enough components in the robot itself that rigid body
dynamics is not sufficient for modelling. In fact, in many industrial hydraulic robots,
the actuators and the servovalves dynamics dominate the total dynamic behaviour of
the robots. We try to avoid using structured dynamic models such as first- or second-
order transfer functions as general representations of the dynamic behaviour of the
components of the robot (e.g. servovalves in the hydraulic robots and the gear stiffness
in the non-direct drive systems). We are proposing a dynamic model that can
represent the complete dynamic behaviour of the robot in a very general form.

A similar modelling method can be given for analysis of the linearly treated robots.
The transfer function matrices G and S in (2) are defined to describe the dynamic
behaviour of a linearly treated robot manipulator with positioning controller:

y[jaJ] = G[jaJ]e[jro] + S[jro] d[jro] (2)

(Throughout this paper, for the benefit of clarity, we develop the frequency domain
theory for linearly treated robots in parallel with the non-linear analysis. The linear
analysis is useful not only for analysis of robots with inherently linear dynamics, but
also for robots with locally linearized dynamic behaviour. In the latter case, the
analysis is correct only in the neighbourhood of the operating point.)

In (2), S is called the sensitivity transfer function matrix and it maps the external
forces to the end-point position. G[jro] is the closed-loop transfer function matrix that

0
+

~ G -:..c~

1. 

Dynamics of the manipulator with the positioning controller (all the operators of
the block diagrams of this paper are unspecified and may be frequency domain
mappings or time domain input-output relationships).

I'igure
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maps the input trajectory vector, e, to the robot position, y. For a robot with a 'good'
positioning controller, within the closed loop bandwidth S[jw] is 'small' in the
singular-value sense, while GUw] is approximately a unity matrix. (The maximum
singular value of a matrix M, umax[M] is defined as:

~___rMl =max IMzl
i "'.A~ ~ Izl

where z is a non-zero vector an~ I .I denotes the euclidean norm.)

3. JDynamic behaviour of the environment
lrhe environment can be very 'soft' or very 'hard'. We do not restrain ourselves to

any geometry or to any structure. If one point on the environment is displaced as
the vector x, then the required force to do such a task isf. Mapping E in (3) represents
the environment dynamics:

f = E[xJ (3)
~~~..."

Xo in Fig. 2 is the initial location of the point of contact before deformation occurs
and y is the robot end-point position [x = y -xoJ. E is assumed to be stable in Lp-
sense; E:L;I--+E:L; and IIE(x)llp<a3I1xllp+P3' Confining (3) to cover the linearly
treated environment, (4) represents the dynamic behaviour of the environment with
linear differential equations,

f[jro] = E[jro]x[jro] (4)

E[jGa] is a transfer function matrix that maps the amplitude of the displacement
vector, x, to the amplitude of the contact force,! The matrix E is an n x n transfer
function matrix. E is a singular matrix when the robot interacts with the environment
in only some directions. For example, in grinding a surface, the robot is constrained by
the environment in the direction normal to the surface only. Readers can be convinced
of the truth of (4) by analysing the relationship of the force and displacement of a

~~~--~

.:!::---m.!----.~ f

Figure 2. Environment and its dynamics.
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spring as a simple model of the environment. E resembles the stiffness of a spring.
Kazerooni (1986 a, b) represent [Ms2 + Cs + K] for E where M, C and K are
symmetric square matrices and s = jw (Lancaster et al. 1966). M is the positive definite
inertia matrix while C and * are the positive semi-definite damping and the stiffness
matrices, respectively.

4. Non-linear dynamic behaviour of the robot manipulator and environment
Suppose a manipulator with dynamic equation (1) is in contact with an

environment given by (3); then f = -d. Figure 3 shows the dynamics of the robot
manipulator and the environment when they are in contact with each other. Note that
in some applications, the robot will have only uni-directional force on the environ-
ment. For example, in the grinding of a surface by a robot, the robot can only push the
surface. If one considers positive}; fOT 'pushing' and negative}; for 'pulling', then in this
(~lass of manipulation, the robot manipulator and the environment are in contact with
I~ach other only along those directions where); > 0 for i = 1, ..., n. In some appli-
(~ations such as screwing a bolt, the interaction force can be positive and negative.
This means the robot can have clockwise and counter-clockwise interaction torque:
The non-linear discriminator block-diagram in Fig. 3 is drawn with a dashed line to
illustrate the above concept.

Using (1)-(3), (5) and (6) represent the entire dynamic behaviour of the robot and
environment as a whole:

IY=G[e]+S[-f] (5)

IJ=E[x] wherex=y-xo (6)

If all the operators in Fig. 3 are considered linear transfer function matrices, (7)
and (8) can be obtained to represent the end-point position and the contact force
when Xo = 0: !

y=[In+SE]-lGe (7)

f= E[In + SE]-lGe (8)

To simplify the block diagram of Fig. 3, we introduce a mapping from e to f:

f = V[e] (9)

V is assumed to be a stable operator in the Lp-sense; therefore: V: L;f--+ L; and also
IIV[e]llp<tX41Iellp+.fJ4' Note that one can still define V without assuming the
superposition of effects of e and din (5) (or (1». If all the operators in Fig. 3 are
1:ransfer function matrices, then V = E[I n + SE] -1 G.

u

~ .{:~---"'Q-~..()~--!.--1-'- + y -x
G + j

s

~ ,---" 'f
, -¥- '.4-J'

Figure 3. Interaction of the robot manipulator with the environment.
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5. Architecture of the closed-loop system
We propose the architecture of Fig. 4 to develop compliancy for ~he robot. The

compensator, H, is considered to operate on the contact force,! The compensator
output signal is being subtracted from the input command vector, r, resulting in the
input trajectory vector, e, for the robot manipulator.

There are two feedback loops in the system; the inner loop (which is the natural
feedback loop), is the same as tlhe one shown in Fig. 3. This loop shows how the
contact force affects the robot in a natural way when the robot is in contact with the
environment. The outer feedbac~ loop is the controlled feedback loop. If the robot
and the environment are not in contact, then the dynamic behaviour of the system
reduces to the one represented by (1), which is a plain positioning system. When the
robot and the environment are in contact, then the value of the contact force and the
end-point position of robot are given by f and y where the following equations are
true:

y r G[e] + S[ -I] (10)

frE[x] ~li'ei"ix=y-xo (11)

e == r -H[f] (12)

If the operators in (10), (11), and (12) are considered transfer function matrices,
(13) and (14) can be obtained t~ represent the interaction force and the robot end-
point trajectory for linearly trea~ed systems when Xo = 0:

f=~[JII+SE+GHE]-1Gr (13)

Y=[~II+SE+GHE]-1Gr (14)

The objective is to choose a class Of compensators, H, to control the contact force with
the input command r. By knowing S, G, E, and choosing H, one can shape the contact
force. The value of H is the choice of the designer and, depending on the task, it can
have various values in different 4irections. A large value for H develops a compliant
robot while a small H generates a stiff robot. Note that Sand GH add in (14) to
develop the total compliancy in ~e system. GH represents the electronic compliancy
in the robot while S models the ~atural hardware compliancy (such as RCC or the
robot structural compliancy) in ~he system. Equation (14) can be rewritten as y =
E-1 [E-1 + S + GH] -1 Gr. Note that the environment admittance (ljimpedance in

the linear domain), E-1, the robdt sensitivity (ljstiffness in the linear domain), S, and

~--s)-=.[~~1J-~~~-T
E~

d
---:-\

~ -¥-:--'

H-!=fi: compensator

Figure 4. Closed-loop system.
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the electronic compliancy, Gfl add together to form the total sensitivity of the system.
If H = 0, then only the admittance of the environment and the robot add together to
form the compliancy for the system. By closing the loop via H, one can not only add to
the total sensitivity but also shape the sensitivity of the system. One cannot choose
arbitrarily large values for H; the stability of the closed-loop system of Fig. 4 must be
guaranteed. The trade-off Qetween the closed-loop stability and the size of H is
investigated in § 6.

When the robot is not iJil contact with the environment (i.e. the outer feedback
loop in Fig. 4 does not exist), the actual position of the robot end-point is governed by
(1). When the robot is in cont~ct with the environment, then the contact force follows r
according to (10), (11) and (.2). The input command vectot, r, is used differently for
the two categories of manoeu~rings; as an input trajectory command in unconstrained
space (see (1» and as a com~and to control force in constrained space. We do not
command any set-point for fbrce as we do in admittance control (Raibert and Craig
1981, Whitney 1977). This! method is called impedance control (Hogan 1985,
Kazerooni 1986 a, b) becaus~ it accepts a position vector as input and reflects a force
vector as output,Jb~re is no ihardware or software switch in the control sYS,~mcwhen
the robot travels between u~onstrained space and constrained space. The feedback
loop on the contact force clos~s naturally when the robot encounters the environment.

6. Stability analysis
The objective of this secti~n is to arrive at a sufficient condition for stability of the

system shown in Fig. 4. This $ufficient condition leads to the introduction of a class of
compensators, H, that can be used to develop compliancy for the family of robot
manipulators with dynamic behaviour represented by (1). Using operator V defined
by (9), the block diagram of Fig. 5 is constructed as a simplified version of the block
diagram of Fig. 4. First we us~ the Small Gain Theorem to derive the general stability
condition. Then, with the heIr of a corollary, we show the stability condition when H
is chosen as a linear operatqr (transfer function matrix). Inequality (24) shows the
bound on the size of H in the $ingular-value sense when H is a transfer function matrix
while Vis still a non-linear operator. Finally, if all the operators in Fig. 4 are transfer
function matrices, then the stability bound is shown by (25). Section 7 is devoted to
stability analysis of the linea;rly treated systems, when the environment is infinitely
rigid in comparison with th~ robot stiffness. The stability analysis and the role of
robot sensitivity and environ~ent dynamics on size H are best shown by linear theory
in (27)-(31). In particular, we confine our analysis to linear one-degree-of-freedom
robot in (32) and (33) for better understanding the nature of the stability analysis.

The following proposition (using the Small Gain Theorem) states the stability
condition of the closed-loop system shown in Fig. 5.

f
~)-=-..

Manipulator and the environment with force feedback compensator (simplified
version of Figure 4).

Figure 5.
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If conditions (i), (ii) and (iii) I hold:

(i) V is an Lp-stable operatfr, that is

(a) V[e]:L:t--+L:
I (15)

(b) IIV[eJllp<a4I1ellp+P4 (16)

(ii) H is chosen such that mapping H[fJ is Lp-stable, that is

(a)

(b)

H[fJ : L:I-+ L: I

IIH[fJllp < ~s IIfllp + Ps

and ~j"
(iii) (X4(XS < 1 (19)

then the closed-loop system (Fi .5) is Lp-stable. The proof is given in Appendix A.
Substitutin~fg[~JIJ/Ip from (16) into (18) results in (20) (n~h~tf= V[e]).

IIHV[e)/ip < (X4(XS Ile/ip + (XSP4 + Ps (20)

(X4(XS in (20) represents the gaiq of the loop mapping, HV[e]. The third stability
condition requires that H be chqsen such that the loop mapping, HV[e], is linearly
bounded with less than a unity slope. The following corollary develops a stability
bound if H is selected as a linear transfer function matrix.

Corollary
The key parameter in the proposition is the size of cx4cxso According to the

proposition, to guarantee the stability of the system, H must be chosen such that norm
of HJ7[e] is linearly bounded with a slope that is smaller than unity. If H is chosen as a
linear operator (the impulse response) while all the other operators are still non-
linear, then:

IIHV[e] lip < 111 V[e] lip

when~

Y = O"max[NJ (22)

UrDax indicates the maximum singular value, and N is a matrix whose ijth entry is
IIHij Ill' In other words, each member of N is the Ll norm of each corresponding
member of H, Considering (16), (21) can be rewritten as:

IIHV[e] IIJ < yll V[e] II, < Y(X411ell, + yP4 (23)

Comparing (23) with (20), to guai;rantee the closed-loop stability, Y(X4 must be smaller
than unity, or, equivalently:

'}'<-=-
CX4

To guarantee the stability of the ,closed loop system, H must be chosen such that its
'size' is smaller than the reciproc~l of the 'gain' of the forward loop mapping in Fig. 5.
Note that y represents a 'si~e' of:H in the singular-value sense.
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When all the operators o~ Fig. 5 are linear transfer function matrices one can use
Multivariable Nyquist Criteria to arrive at the sufficient condition for stability of the
closed-loop system. This su~cient condition leads to the introduction of a class of
tran~fer function mat~ces, ~, th~t stabilize. the fa~ily of linearly treated robot
manIpulators and envlronm~nt usIng dynamic equations (2) and (4). The detailed
derivation for the stability cQndition is given in Appendix C. Appendix D shows that
the stability condition given py Nyquist Criteria is a subset of the condition given by
the Small Gain Theorem. According to the results of Appendix C, the sufficient
c:ondition for stability is giv~n by (25).

umax[GHEJ] ~ umin[SE + In] for all WE [0,00] (25)

or a more conservative con4ition,

~maxL".J -O"max[E[I" + SE]-IG] for all (J) e [0, 00] '~VI

~)imilar to the non-linear case, H must be chosen such that its 'size' is smaller than the
reciprocal of the 'size' of the forward loop mapping in Fig. 6 to guarantee the stability
of the closed-loop system. Note that in (26) O"max represents a 'size' of H in the singular-
,'alue sense.

Inequality (26) reveals sotne facts about the size of H. The smaller the sensitivity of
the robot manipulator is, the smaller H must be chosen. Also from (26), the more rigid
the environment is, the smaller H must be chosen. In the 'ideal case', no H can be
found to allow a perfect posi~ioning system [S = 0] to interact with an infinitely rigid
(:nvironment [E = 00]. In ottier words, for stability of the system shown in Fig. 4, there
must be some compliancy 4ither in robot or in the environment. RCC, structural
dynamics and the tracking icontroller stiffness form the compliancy of the robot.
~)ection 7 gives more inform~tion about the effects of E on the stability region.

,. rJl1<!' I .-

t-_!:~)~~~~~::_J-.T--- f e -1
r- EISE+lnJ G

];'igure 6. Simplified form of Fig. 5 when all the operators are linear transfer function matrices:
V=E(In+SE)-IG.

'7. Stability for very rigid environment
In most manufacturing tasks, the end-point of the robot manipulator is in contact

'with a very stiff environment. Robotic deburring and grinding are examples of
practical tasks in which the robot is in contact with hard environment (Kazerooni
1986 c, 1986 a, 1988). According to the results in Appendix B, when the environment is
very stiff, (E is very 'large' in the singular-value sense), the limiting value for the
I~ontact force and the end-point position are given by (27) and (28) respectively:

.:C"'
l foo=[S+GH]-lGr (27)

.Yoo = 0 (28)

Since G ~ In for all Q) E [0, Q) ], (the end-point position is 'approximately' equal to the
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input trajectory vector, e), the val~e of the contact force,/, within the bandwidth of the
system [0, roo] can be approxim~ted by (29):

I", ~ [84 H]-lr for all roE [0, roo] (29)

By knowing 8 and choosing H, o*e can shape the contact force. The value of [8 + H]
within [0, roo] is the designer's c~oice and, depending on the task, it can have various
values in different directions (K~ erOOni 1986 a, 1986 b). A large value for [8 + H]
within [0, roo] develops a compl'ant system while a small [8 + H] generates a stiff
system. If H is chosen such that 8 + H] is 'large' in the singular-value sense at high
frequencies, then the contact force in response to high-frequency components of r will
be small. If H is chosen to guarantee the compliance in the system according to (29),
then it must also satisfy the stability condition. It can be shown that the stability
criteria for interaction with a very rigid environment is given by (30):

O"max[H] ~ O"~[S-lG] \"Vj

Itls-clearthat If the environment is very rigid, then one must choose a very small H to
satisfy the stability of the systemjwhen S is 'small'. (A good positioning system has
'small'S.) Since G ~ In for all (J) [0, (J)o], the bound for H, for a rigid environment
and a 'small' stiffness, is given b (31):

O"max[H] ~!O"min[S] for all (J) E [0, (J)o] (31)

If S is zero, then no H can be obt~ined to stabilize the system. To stabilize the system
of the very rigid environment andl the robot, there must be a minimum compliancy in
the robot. Direct drive manipula~ors, because of the elimination of the transmission
systems, often have large S. This allows for a wider stability range in constrained
manipulation. In the case of th~ one-degree-of-freedom system the condition for
stability is given by (32):

for all (J) E [0, 00]

where I .I denotes the magnitude of a transfer function. Since in many cases G ~ 1 for
all 0 <: co < coo, then S must be c~osen such that:

IHI< I[ s~~JI for all co E[O, cooJ (33)

Inequality (33) clearly shows thaJ the more rigid the environment is, the smaller H
must be chosen to guarantee the ~tability of the closed-loop system. In the case of a
rigid environment ('large' E) and ~ 'good' positioning system, H must be chosen as a
very small gain.

WI: conclude that for stability
~1 f the environment and the robot taken as a whole,

there must be some initial compli ncy either in the robot or in the environment. The
initial compliancy in the robot ca be obtained by a non-zero sensitivity function or a
passive compliant element such~ an RCC. Practitioners always observed that the
systeml of a robot and a stiff envir nment can always be stabilized when a compliant
element (e.g. piece of rubber or R C) is installed between the robot and environment.
One can also stabilize the system ~f robot and environment by increasing the robot
sensitivity function. In many co~mercial manipulators the sensitivity of the robot
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manipulators can be increased by decreasing the gain of each actuator positioning
lc)op. This also results in a narrower bandwidth (slow response in the unconstrained
manoeuvring) for the robot positioning system.

8. Summary and conclusion
A new controller architecture for compliance control has been investigated using

unstructured models for dynamic behaviour of robot manipulators and environment.
This unified approach of modelling robot and environment dynamics is expressed in
terms of sensitivity function1 The control approach allows not only for tracking the
input-command vector, but Iso for compliancy in the constrained manoeuvrings. A
bound for the global stabilit of the manipulator and environment has been derived.
f~or stability of the environm nt and the robot taken as a whole, there must be some
initial compliancy either in the robot or in the environment. The initial compliancy in
the robot can be obtained ,by a non-zero sensitivity function for the positioning
controller or a passive compliant element such as an RCC.

.Alppendix A
Definitions 1 to 7 will be used in the stability proof of the closed-loop system

(Vidyasagar and Desoer 1975, Vidyasagar 1978).

Definition 1
For all p E [1, 00], we Ilabel as L~ the set consisting of all functions 1 =

[/1 12 ...In]T: [0, oo]t-+~n such that:

fojlhlPdt<OO fori=1,2,...,n

Definition 2
For all Te [0,00], the ~ ctionfT defined by:

_ { I O~t~T
fT- 0 T<t

is called the truncation of f to the interval [0, T].

Definition 3 I

The set of all functionsft [fl f2 ...fn]T:[O,cx)]l-+lRnsuchthatfTEL~foral1
1inite T is denoted by L~..f by itself mayor may not belong to L~.

Definition 4

The norm on L; is defin~d by:

Ilfllp=

where II/; lip is defined as: [ f <X> J l/P 11J;llp= 0 Cl)ilJ;IPdt
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where Wi is the weighting factor. C4i is particularly useful for scaling forces and torques
of diflerent units. I

Definition 5
Let v[ .] : L:el-+ L:eo We say trat the operator V[ .] is Lp-stable, if:

(a) v[. ]:L:I-+L:
(b) there exist finite real cons~ants a4 and P4 such that:

!

IIV[e]1I4<a4I1ellp+P4 \feEL:

According to this definition wel first assume that the operator maps L:e to L:e. It is
clear that if one does not show that v[ .] : L:el-+ L:e, the satisfaction of condition (a) is
impossible since L:e contains L:. G>nce mapping, v[ .], from L:e to L:e is established,
then we say that the operator l1[ .

1] is Lp-stable if, whenever the input belongs to L:,
the resulting output belongs to L:. Moreover, the norm of the output is no larger than
tX4 times the norm of the input plus the off~:onstant 1>'4.

De.finjl~jon 6

The smallest 1X4 such that there exist a P4 so that inequality b of Definition 5 is
satisfi~:d is called the gain of the 9perator v[ .].

Definition 7 I

Let V[.]: L:ef-O L:e. The ope~ator V[ .] is said to be causal if:
I

V[e]T = V[e~] 'v' T< <X) and 'v' e E L:e

Proof lof the non-linear stability proposition

Define the closed-loop mappi~g A: rf-+e (Fig. 5)

le=r-HV[e]
For each finite 7; (A 2) is true.

!leT lip < IlrT lip + IIHV[e]T lip for all t E [0, T]

Since HV[e] is Lp-stable. Therefote, (A 3) is true.

IleT lip < IIrT lip + IXSIX41ueT lip + IXsP4 + Ps for all t E [0, T]

Since as IX4 is less than unity:

(XSP4 + Ps_J~& for all t e [0, TJ
1 -IXs~4 1 -IXsIX4

Inequality (A 4) shows that e[ .] ~s bounded over [0, TJ. Because this reasoning is
valid for every finite 1:; it follows that e['] e L:e, i.e. that A: L:eI-+L:e. Next we show
that the mapping A is Lp-stable if the sense of Definition 5. Since r e L:, therefore
Ilrllp < 00 for all t e [0, 00], there~ re (A 5) is true:

Ilelip < 00 for all t e [0, 00] (A 5)

Inequality (A 5) implies e belongs t~ Lp-space whenever r belong to Lp-space. With the

Ilerllp< (A 4)+
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same reasoning from (A I)-fA 5), it can be shown that (A 6) is true:

lie II " < -_U~~ + CXSP4 + Ps for all t E [0, T]
(A 6)

1 +- (XS(X4 1 -(XS(X4

Inequality (A 6) shows the ltnear boundedness of e (Condition (b) of Definition 5).
Inequality (A 6) and (A 5) ta~en together, guarantee that the closed-loop mapping A
is Lp-stable. 0

flppendix B i
A very rigid environment I generates a very large force for a small displacement. We

c:hoose the minimum singular value of E to represent the size of E. The following
proposition states the limiting value of the force when the robot manipulator is in
c:ontact with a very rigid environment.

If (Jmin[E] > Mo, where ~ o is an arbitrarily large number, then the value of the
force given by (21) will app" Q~y"l! the expression given by (B 1):","" "e;CC ---="~

I j..,=[S+GH]-lGr (B1)

l~roof rWe will prove that IfCXI -I approaches a small number as Mo approaches a large
number:

I", -1= [S+ G -l[In- [S + GH]E[In + SE + GHE]-I]Gr

I-~actoring [In + SE + GHE] 1 to the right-hand side:

I", -1= [S+ GH)-l[In + SE + GHE]-IGr

1/",-/I<O"max[S+ H)-I xO"max[In+SE+GHE]-1 XO"max[G]lrl

II", -II < O"max[G]lrl
(B 5)

O"min[S +~H] x [:min[~: dHE] -1]

,11", ma. [ ] I I
1/..,-/1< Umin[S + pHjX [Umin[S + GH] x Umin[E] -1]

(Tmax[G] and O"min[S + GH] are bounded values. IfO"min[E] > Mo, then it is clear that
the left-hand side of (B 6) can be an arbitrarily small number by choosing M 0 to be a
large number. (The proof for Yoo ~ 0 is similar to the above.) 0

Appendix C i

The objective is to find a!UffiCient condition for stability of the closed-loop system
in Fig. 4 by Nyquist criteria. The block diagram in Fig. 4 can be reduced to the block
diagram in Fig. 7 when all the operators are linear transfer function matrices and
,. = 0 i

-"0 .I
There are two elements i~ the feedback loop; GHE and SE. SE shows the natural

torce feedback while GHE represents the controlled force feedback in the system. If
,f/ = 0, then the system in Fig. 7 reduces to the system in Fig. 3 (a stable positioning
robot manipulator which is in contact with the environment E). The objective is to use
Nyquist criteria (Lehtomakti 1981, Kazerooni and Houpt 1986) to arrive at the
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1:1~-G L-(
-

GHE+SE --

Figure 7. Simplified block-diagram of the system in Fig. 5.

sufficient condition for stability 1f the system when R = O. The following conditions
are regarded. I

I

(i) The closed-loop system id Fig. 7 is stable if R = O. This condition simply states
the stability of the robot manipulator and environment when they are in
contact. (Figure 3 shows this configuration.)

(ii) R is chosen as a stable linear transfer function matrix. Therefore the
augmented loop transfe~ function (GRE + SE] has the same number of
unstable poles that SE h s. Note that in many cases SE is II: s°f"a1>le system.

(iii) Number of poles onjw a is for both loop SE and [GRE + SE] are equal.

Considering that the system ip Fig. 7 is stable when R = 0, we plan to find how
robust the system is when GRE IS added to the feedback loop. If the loop transfer
function SE (without compensat! , R) develops a stable closed-loop system, then we

are looking for a condition on such that the augmented loop transfer function

[GRE + SE] guarantees the sta ility of the closed-loop system. According to the
Nyquist criteria, the system in Fi .7 remains stable if the anticlockwise encirclement
of the det ESE + GR E + I II] around the centre of the s-plane is equal to the number of
unstable poles of the loop transfer function [GRE + SE]. According to Conditions (ii)
and (iii) the loop transfer functio sSE and [GRE + SE] both have the same number
of unstable poles. The closed-lop system when R = 0 is stable according to
Condition (i); the encirclements f det ESE + III] is equal to unstable poles of SE.
When GRE is added to the syste , for stability of the closed-loop system, the number
of the encirclements of det ESE + R E + I II] must be equal to the number of unstable
poles of the [GRE + SE]. Since t number of unstable poles of ESE + GRE] and SE
are the same, therefore for stability of the system det ESE + GRE + III] must have the
same number of encirclements that det ESE + III] has. A sufficient condition to
guarantee the equality of the nu ber of encirclements of det ESE + GRE + III] and
det ESE + III] is that the det ESE GRE + III] does not pass through the origin of the
s-plane for all possible non-zero ut finite values of R, or

det [SE+ GR + III] #0 for all W E [0,00] (C 1)

If (C 1) does not hold then there ust be a non-zero vector z such that:

[S +GRE+III]z=O (C2)

or

(C 3)GIEZ = -ESE + In]z

A sufficient condition to guarant that (C 3) will not occur is given by (C 4).

umax[GHE] ~ U in[SE + In] for all WE [0,00]
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or a more conservative con~ition:

1
(1max[H]~1max[E(SE+In)-lG] IJ \'--;])

:Note that E[SE + In] -1 G is the transfer function matrix that maps e to the contact

force, f Figure 6 shows the closed-loop system. According to the result of the
proposition, H must be chosen such that the size of H is smaller than the reciprocal of
the size of the forward loopl transfer function, E[SE + In] -1 G.

for all (J) E [0, OC

Appendix D
jThe following inequaliti s are true when p = 2 and H and V are linear operators:

IIH[V[eJJllp < vII V[eJllp (D 1)

II V[eJllp < Jl.llellp (D 2)

where

Jl. = O"max[Q], and Q is the matrix whose ijthentry is given by [Q1j = sup", /{Q]ijl
v = O"max[R], and R is the matrix whose ijth entry is given by [R1j = sup", I[R1jl

Substituting inequality (02 in (0 1):

II HV[eJ lip < Jlvllellp (03)

According to the stability c ndition, to guarantee the closed-loop stability JlV < lor:

1
v < -(0 4)

.Jl
Note that the following are true:

0" ax[V] < Jl. for all WE [0,00] (D 5)

0" ax[B] < v for all WE [0,00] (D 6)

Substituting (D 5) and (D 6 into (D 4) which guarantees the stability of the system,
the following inequality is 0 tained:

O"max[H] < t for all WE [0, 00]
O"max[V]

O"max[H] < I & I for all (J) E [0,00]

O"max[E[In + SE]-lG]

][nequality (0 8) i~ id~ntica 1 ° (~6). ~his.sho.ws that the linear condition f~~ stab.ility

given by the multIvanable qUISt cntenon IS a subset of the general condItIon gIven

by the small gain theorem.
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